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INTRODUCTION

Soil degradation is without a doubt one of the 
world’s most pressing environmental issues. As a 
result of various degradation processes around the 
world (Ranjani et al., 2021), approximately 6 mil-
lion hectares of farming fields have become less 
productive (Cui et al., 2021). For example, the 
value of Iraqi sediment plains land is decreasing 
due to a rise in the number of companies and their 

pollution, urbanization, increasing traffic levels, 
and even the exploitation of sewage and waste 
dumps (Bahram et al., 2018). Water erosion, de-
forestation, salinity, dryland, and compression are 
all indications of land degradation in Al-Qadisi-
yah Governorate lowlands, which are part of the 
Iraqi sedimentary plain (Cui et al., 2018).

Heavy metals in water can be found in two 
forms: dissolved and particulate. They are consid-
ered continuous and permanent pollutants in the 
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ABSTRACT
The precise determination of trace element concentrations in the soil of the Al-Qadisiyah Governorate is part of the 
Iraqi sedimentary plain is required to eliminate high levels of harmful elements in polluted soils. The soil samples 
were collected from 28 representative profiles in Al-Shamiyah city.  The soil profiles were defined using virtual 
characterization. In this study, I-geo was used to analyze soil pollution. The goals and destinations of the I-geo 
readings Contamination of Cd, Ni, Pb, and Zn in various soil strata. I-geo (Cd) generally range from 0.58 to 4.71, 
I-geo (Ni) range from 0.09 to 4.07, I-geo (Pb) ranged range from 0.07 to 2.79, and I-geo (Zn) ranges from zero 
to 2.79, depicting the local differences in I-geo for pollutants in the research area. Suggesting that the research 
area had been heavily polluted from Cd in the varied layers of the soils. On the maps pertaining to Zn and Pb, the 
majority of the research area was primarily covered in the orange and blue hues, suggesting that a significant por-
tion of the research area was likely to be severely polluted from Cd and Ni. Moreover, the land cover layouts of 
Ni in layers of the soils revealed concentrations rising towards to the western sections, which could be attributed 
to proximity to a major drain. The results display that its I-geo value of four trace metals generally range from 
non-pollute to significantly heavily polluted. The I-geo data show significant differences in levels of the Ni, Cd, 
Zn, and Pb in different soils strata. Including these findings, the soil in Al-Shamiya, Al-Qadisiyah Governorate 
contains high levels of Cd, Ni, Pb, and Zn. Industries of fossil fuel combustion,  as well as other man-made wastes 
include agricultural nutrients, soil conditioners, and sludge, particularly, ammonium phosphate pollution in soils. 
The pollutant load index (PLI) reveals a baseline level of contamination in 28 locations, as well as a decline in soil 
quality in four others. Finally, assessing the danger of contamination for trace metals utilizing the I-geo and PLI by 
using the GIS method and multimodal models is a helpful and relevant strategy.
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environment, providing a considerable health risk 
to many creatures in the ecosystem due to their 
toxic properties at the concentrations greater than 
allowed limits, as well as their ability to accumu-
late. Heavy metals enter the aquatic system by 
natural and human activities such as forest fires, 
volcanoes, rock erosion, mining, fossil fuel burn-
ing, residential effluents, untreated industrial ef-
fluents, wind, rain water, waste incineration, and 
agricultural operations (Aguilera et al., 2021).

While a water analysis can assist determine 
the level of heavy metal contamination in rivers, 
sediments can also be utilized as a pollution in-
dicator. Heavy metals have a high binding affin-
ity, which results in low concentrations in water 
and large concentrations in sediments (Duan et 
al., 2018). Numerous pollution indices and mea-
suring techniques are accessible for investigating 
soils contamination, including geo-accumulation 
index I-geo and PLI (pollution load index) (Man-
dour et al., 2021). The majority of studies have 
concentrated on trace element transport in soil 
(Fang et al., 2017). Geo is ideal for monitoring 
and evaluating the found element levels in the 
soil, since it clearly demonstrates the impact of 
human actions on trace metals as well as the influ-
ence of the found elements on the environmental 
(Hagmann et al., 2015). Trace element concentra-
tions in soil frequently exceed the background 
amounts. Both methods were utilized to deter-
mine the pollution levels in Al-Qadisiyah soil and 
bottom sediment (Jiang et al., 2019).

Globalization and uncontrolled agricultural 
methods have had an influence on natural land-
scapes and ecosystems (Ju et al., 2019). As a 
result, assessing the soil contamination necessi-
tates a thorough understanding of the geographi-
cal distribution of pollutants (Moorhead et al., 
2016). For low-cost soil surveys, a GIS database 
can offer precise information. GIS databases may 
also be used to assist in the development of digi-
tal elevation models (DEMs), which are used to 
describe landforms (Schloter et al., 2018). Trace 
element distribution and concentration must be 
investigated. This will allow the pollution lev-
els to be assessed as well as the associated en-
vironmental and human health consequences to 
be studied (Usman et al., 2021). Soil hazardous 
element evaluation and mapping can help in 
the formulation of the strategies to improve the 
long-term utilization of soil resources and reduce 
soil deterioration. In order to lower the elevated 
amounts of hazardous elements in contaminated 

soils, proper estimations of concentrations of 
hazardous elements in the soil, backed by GIS 
information are required (Awasthi et al., 2017). 
Estimating the PLI necessitates a series of calcu-
lations that take a substantial amount of both ef-
fort and time to transform numerous values from 
the toxic metal data for the soil into a single num-
ber that describes the contaminant level (Sinsa-
baugh et al., 2017). As a consequence, the goals 
of the study were as follows: (i) utilize the GIS 
approach to map contamination of soil based on 
I-geo for four trace elements (Ni, Cd, Pb, and Zn) 
in soil; and (ii) use I-geo and PLI to quantify the 
risk of contamination for four trace elements in 
soil (Tapia-Torres et al., 2015).

MATERIALS AND METHODS

The study area

The Iraqi sedimentary plain, which is dis-
tinguished by a simple slope from the northwest 
to the south and southeast between longitudes 
(44042’0 “E) and (44027’0” E) and two latitudes 
(31045’0 “N) and (3203’0” N), passes through 
the Dagharah district, the line (22 m) through the 
Al Saniya district, and the line (24 m) through 
the Al-Shamiyah district (Figure 1). Summers 
are hot and dry, while winters are bitterly cold in 
the study region. Winter is a dry season, with an 
average annual rainfall of 144 mm.

The flood plain, which encompasses the ma-
jority of the governorate (90.9%), is produced by 
the sediments transported across the study area 
by the Euphrates River and its branches during 
flood seasons. During the river’s dominance, the 
nearby regions formed longitudinal zones around 
river lengths and branches known as river shoul-
ders, while fine clay particles gathered in smaller 
sizes away from river courses to form the Al-
Shamiyah river basins.

The soil is composed of silt, clay, and sand 
and is commonly silty clay. The fine texture of the 
soil turns to clay as one moves farther from the 
river’s path. Despite the height difference, there 
are layers of sandy soil stretching from the river’s 
path to the sides, which are not an impediment to 
agricultural activities, except that the lack of slope 
makes the surface drainage of surplus irrigation 
water difficult, resulting in the salinity problem. 
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Soil assessment

During April 2020, the soil samples were tak-
en from 28 representative profiles in Al-Shamiyah 
city. Twenty-one soil profiles were chosen based 
on the study area’s geomorphologic units, and 
the soil samples were taken from different levels 
based on morphological variances. For the reason 
that each physiographic unit covers multiple pro-
files, the distribution degree of certainty is high 
because it encompasses the physiographic units 
to a substantial extent (Wahsha et al., 2017). The 
soil profiles were defined using virtual character-
ization, and the color grade was determined using 
the Mansell book.

Contamination evaluation

Geo-accumulation Index (I-geo)

The I-geo analyzes pollution by compar-
ing the measured trace element levels to back-
ground levels, which were originally intended 
to evaluate bottom sediments (Wang M. et al., 
2017). Using the following equation, the geo-
graphic accumulation index (I-geo) was utilized 

to evaluate the trace element pollution (Hossain 
Bhuiyan et al., 2021):

 Igeo = Log2 Cn /1.5Bn  (1)

where: Cn is the trace element concentration 
determined in the soil and Bn is the geo-
chemical background concentration of the 
trace element (middle crust) (Wang Y. et 
al., 2017).

In order to lessen the influence of any varia-
tions in background values induced by rocky 
variations in sediments, the constant 1.5 was in-
troduced to Equation (1). Because soil is a part 
of the Earth’s crust, and its chemical composition 
is linked to that of the crust, the concentration 
reached here is comparable to that of the crust’s 
components (Wang et al., 2019). Table 1 shows 
the I-geo categorization.

The Pollution Load Index (PLI)

The PLI is a Cif that estimates the total val-
ue of all trace elements at a given location using 
a parametric average of pollution coefficients 
(Wood et al., 2016). By calculating the metal 

Figure 1. The study area and sampling site locations in Al-Shamiya, Al-Qadisiyah Governorate, Iraq
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concentration by the background value equation, 
the contamination factor (CF) was calculated:

 CF = Cn /Bn (2)

The pollutant load index (PLI) was created 
using the equation below (Xian et al., 2015) to 
calculate the element concentrations in soils in 
relation to a standard concentration:

 PLI = (CF1 × CF2 ×... × CFn) 
1/n (3)

CF is the contamination factor, and n is the 
number of metals. This metric may be used to as-
sess the degree of pollution in the environment in 
order to enhance soil quality through monitoring. 
The PLI categorization is shown in Table 2 (Xu 
et al., 2018).

Spatial distributions of trace elements

Spatial completion is often  when data is 
present is obtained in multiple areas (such as soil 
qualities) to offer continuous information (Xian 
et al., 2015). The ArcGIS Spatial Analyst 10.2.1 
update adds spatial data analysis tools for mod-
eling spatially distributed uses statistical theory 
and methodology. For four trace elements, the in-
terpolation techniques in ArcGIS Spatial Analysis 

were used to derive the intervening values from 
data. The weighted inverse distance (IDW) is a 
form of approximation that considers the values 
measured around the predicted point. The values 
gathered closer to the prediction site have a great-
er impact on the measured value of the distant 
ones; the closest points to the prediction site are 
given more weight, with the weight varying with 
distance (Wood et al., 2016). It is advantageous 
to use IDW to map the geographic distribution of 
heavy metals. This interpolation approach works 
better with uniformly distributed points (Liang et 
al., 2019). As a result, the number of components 
in the research is related to the existence of other 
sources, such as industrial drainage and agricul-
tural irrigation. The statistical correlations be-
tween the known sites were found using ArcGIS 
IDW tool and the amounts of trace elements in 
the study region were determined. The IDW was 
used to estimate each grid point with 28 nearby 
samples. Two strengths were employed to weigh 
the nearest place, which has a direct influence on 
the number of components in the soil, which var-
ies with respect to the distance from the source, 
making this IDW approach preferable.

 𝑧𝑧(𝑥𝑥0) = ∑ 1𝑧𝑧(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑑𝑑−𝑟𝑟

∑ 1𝑑𝑑𝑥𝑥𝑑𝑑−𝑟𝑟    𝑛𝑛
𝑥𝑥

⁄
𝑛𝑛

𝑥𝑥=0
(4) 

 

 (4)

where: x0 denotes the estimate point and xi de-
notes the number of data inside a certain 
area. The weights (r) are related to the dif-
ference between the estimate and the data 
points by dij.

The IDW method has the effect of providing 
more weight to the data points close to the in-
terpolation point and less weight to the data sets 
further away. As the weight increases, so do the 
number of close-to-x0 effect points.

RESULTS

Variation of four trace elements

This study looked at the pollution of three dif-
ferent soil layers with Cd, Ni, Pb, and Zn. The 
values of the four trace elements varied signifi-
cantly. Cn denotes the quantity of trace metals de-
tected in soil (Cn), Cd ranged from 0.05 to 0.87, 
Ni ranged from 1.70 to 26.90, Pb ranged from 
2.80 to 18.50, and Zn ranged from 2.80 to 18.50. 
As a result, the trace metals quantities in the soil 
are listed in ascending order, as shown in Table 

Table 1. The geo-accumulation index (I-geo) classifies, 
values, and levels of contamination in soil
I-geo class I-geo value Level of contamination

0 I-geo ≤ 0 Uncontaminated

1 0 < I-geo < 1 Uncontaminated/moderately 
contaminated

2 1 < I-geo < 2 Moderately contaminated

3 2 < I-geo < 3 Moderately/strongly 
contaminated

4 3 < I-geo < 4 Strongly contaminated

5 4 < I-geo < 5 Strongly/extremely 
contaminated

6 5 < I-geo Extremely contaminated

Table 2. The PLI categorization
PLI class PLI value Level of pollution

1 0 <  PLI  ≤ 1 Unpolluted

2 1 <  PLI  ≤ 2 Moderately polluted to 
unpolluted

3 2 <  PLI  ≤ 3 Moderately polluted

4 3 <  PLI  ≤ 4 Moderately to highly 
polluted

5 4 <  PLI  ≤ 5 Highly polluted

6 5 ≤  PLI Very highly polluted
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1 for Ni, Pb, Zn, and Cd (Figure 3) and Figure 2 
I-geo (Ni,Pb,Cd,Zn) spatial distribution in soils.

Contamination risk analysis using 
the geo-accumulation index

In this study, the I-geo was used to analyze 
soil pollution. The I-geo readings objectives and 
destinations Cd, Ni, Pb, and Zn contamination 
in the various soil strata. (I-geo) (Cd) generally 
range from 0.58 to 4.71, (I-geo) (Ni) generally 
range from 0.09 to 4.07, (I-geo) (Pb) ranged gen-
erally ranged from 0.07 to 2.79, and I-geo (Zn) 
ranged from 0 to 2.79, as shown in Table 1.

Figure 2 depicts the local diff erences in I-geo 
for the pollutants in the research area. The blue to 
orange colors range symbolizes moderately pol-
luted soil associated with the heavy metals inves-
tigated, whereas the red color range symbolizes 
moderately/strongly contaminated soils. 

The Cd allocation maps are red, suggesting 
that the research area had been heavily polluted 
from Cd in the varied layers of the soils (Fig-
ure 3). On the maps pertaining to Zn and Pb, the 

majority of the research area was primarily cov-
ered in the orange and blue hues, suggesting that a 
signifi cant portion of the research area was likely 
to be severely polluted from Cd and Ni. More-
over, the land cover layouts of Ni in layers of the 
soils revealed the concentrations rising towards to 
the western sections, which could be attributed to 
proximity to a major drain (Figure 4).

The graphic shows the distribution of Pollu-
tion Load Index encompassing the greatest share 

Figure 2. I-geo (Ni, Pb, Cd, Zn) spatial distribution in soils

Figure 3. Geo-accumulation (Cn) used 
for four trace elements
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of moderately polluted areas in blue and gray. The 
orange and red colors cover a moderate to low 
percentage of the heavily polluted areas in the 
research area’s west. Empirical Bayesian Krig-
ing is a Kriging-based interpolation approach and 
inverse distance weighted (IDW) methodology 
ArcGIS Geostatistical and Researcher and the in-
tervening distance weighted shown in Figure 5. 

DISCUSSION 

The results display that its I-geo value of four 
trace metals generally range from non-polluted 
to signifi cantly heavily polluted. The I-geo data 
show signifi cant diff erences in levels of the Ni, 
Cd, Zn, and Pb in diff erent soils strata (Figure 2). 

Including these fi ndings, the soil in Al-
Shamiya, Al-Qadisiyah Governorate contains 
high levels of Cd, Ni, Pb, and Zn. Industries of 
fossil fuel combustion, and nickel mining, as 

well as other man-made wastes, including agri-
cultural nutrients, soil conditioners, and sludge., 
particularly ammonium phosphate, industrial 
emissions, and inorganic fertilizers, are the pri-
mary sources of Cd, Ni, Zn, and Pb pollution in 
soils (Al-Juboury, 2009).

In Iraq’s Al-Qadisiyah Governorate, research-
ers employed the I-geo and PLI to look at trace 
pollutants (Ni, Cd, Zn, and Pb). The condition of 
Cd pollution in the diff erent layers of soils sug-
gested that the research area was considerably 
 contaminated. In terms of Cd and Ni contami-
nation, the Zn and Pb maps revealed that a sig-
nifi cant portion of the study area was moderately 
to severely polluted (Al-Dabbas and Abdullah, 
2020). Furthermore, growing concentrations to-
ward the western areas of the spatial variation 
mapping of Ni in layers of soils were identifi ed, 
that may be due to closeness to the drainage sys-
tem. Four trace element I-geo values revealed the 
circumstances ranging from non-polluted to bad-
ly contaminated. The pollutant load index (PLI) 
reveals a baseline level of contamination in 28 lo-
cations, as well as a decline in soil quality in four 
others (Radhi et al., 2021).

CONCLUSIONS

The Al-Shamiya and Al-Qadisiyah drains of-
ten absorb substantial volumes of contaminants 
in water from industrial and home wastewater as 
well as distributed agricultural drainage. Close at-
tention needs to be given to the Euphrates River, 

Figure 4. Geo-accumulation index (I-geo) 
for four trace elements

Figure 5. The pollution load index to data for four trace elements were used in the fi rst section Empirical 
Bayesian Kriging is a Kriging-based interpolation method and used the second section IDW method
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which absorbs enormous amounts of contami-
nants. The present analysis reveals that the soil and 
heavy metals may provide an excellent source for 
the natural contamination by the heavy metals in 
the metasediments. However, the majority of the 
contamination comes from the sewage discharged 
to the river. This was proven by the low quality of 
water and soil pollution with contaminants in the 
Shamiya region. It is recommended that the urban 
and industrial wastewater supplies in the zone be 
managed before being dumped into the river. Us-
ing the soil nutrients classified as hazardous to 
cultivate rice and maize products for human food 
may entail health problems. 
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